​3D打印工装夹具,通过宝马案例透视其中价值与发展

行业新闻

2024.06.13

阅读量:999+

文章来源: 3D科学谷

宝马集团在增材制造领域的确拥有丰富的经验和历史。从初的原型车和赛车零部件制造,到如今为生产系统制造各种工作辅助工具和工具不断扩展和深化。宝马的增材制造园区不仅是一个生产中心,也是研究和培训的重要基地。通过全球生产网络,宝马集团能够将3D打印技术应用到全球各地的工厂,促进了生产效率和创新能力的提升。

宝马集团在增材制造方面的应用不仅限于生产零部件,还包括为员工定制的矫形器、教学和生产辅助设备,以及3D打印工装夹具等。增材制造技术的应用还有助于减少工装夹具的体积,从而降低二氧化碳排放和成本。这表明宝马集团在追求经济效益的同时,也在致力于环境保护和可持续发展。


3D打印砂型模具

宝马集团兰茨胡特工厂采用的砂型增材制造工艺,对于制造铝制气缸盖的模具来说,是一项革命性的创新。这种技术允许制造出传统工艺难以实现的复杂几何形状,从而提高产品的性能和生产效率。以下是3D打印在制造铝制气缸盖模具中的一些关键步骤和优势:

设计阶段:首先,需要使用CAD软件设计出气缸盖的三维模型。这个模型将被用来生成3D打印所需的数据。

3D打印模具:使用3D打印技术,可以打印出砂型模具。这种模具是通过将沙子逐层涂覆并使用粘合剂固定来制造的。这种方法可以创建出非常精细和复杂的内部结构。

砂型铸造:一旦砂型模具打印完成,就可以将其用于砂型铸造工艺。模具中的空腔被填充以液态铝,然后冷却固化形成气缸盖。

后处理:铸造完成后,需要对气缸盖进行清理,去除多余的材料,并进行必要的机械加工,以确保其尺寸精度和表面光洁度。

环境影响:与传统铸造相比,3D打印技术可以减少材料浪费,并且可能降低能源消耗。

 

3D打印制造大型机器人夹具

宝马集团位于兰茨胡特的轻量化结构和技术中心在制造过程中采用了3D打印技术,这不仅提高了生产效率,还实现了材料的节约和环境的保护。使用3D打印技术制造的机器人夹具,重量大约120公斤,制造时间仅需22小时。这些夹具用于生产BMW M车型的所有CFRP(碳纤维增强塑料)车顶。

压机首先装载CFRP原材料,通过夹具旋转180度来拆除成品屋顶。这种设计简化了生产流程。与传统夹具相比,3D打印夹具重量轻约20%,这有助于延长机器人的使用寿命,减少系统磨损,并延长维护周期。两个步骤的结合使用减少了生产循环时间,提高了生产效率。

夹具的制造采用了两种不同的3D打印工艺,SLS(选区激光烧结)用于制造真空夹具,而LSP(大规模印刷)用于制造大型屋顶壳和轴承结构。

LSP工艺使用注塑颗粒和回收塑料,CFRP剩余材料也可以被回收利用,与传统制造方法相比,制造夹具时的二氧化碳排放量降低了约60%。2023年夏季,宝马推出了新一代更轻的夹具,通过拓扑分析和优化,实现了重量的进一步减轻。新型夹具比前代轻了25%,使得BMW M3 CFRP车顶的制造过程只需一台机器人即可完成,而之前需要三台。

 

3D打印砂型模具用于底盘构造

在慕尼黑工厂,宝马进一步采用了仿生机器人夹具,这些夹具用于固定和移动BMW i4的整个地板总成。这些夹具通过3D打印技术制造的砂铸模具,然后通过铸造的方式填充液态铝,实现了重量和大负载能力的优化。与传统型号相比,这种夹具轻约30%,重量仅为110公斤。这意味着在中期可以使用更小、更轻的重型起重机器人,这些机器人需要更少的能源,从而减少二氧化碳排放。

宝马集团慕尼黑工厂的工程和机器人主管Markus Lehmann表示,他们正在不断扩大通过增材制造(即3D打印)制造的生产辅助设备的使用。在夹具和搬运系统领域,他们已经用高度集成和重量优化的轴承结构取代了完整的夹具系统,这使得在搬运整个BMW i4地板组件时,整个夹具的重量减轻了30%(50公斤),从而延长了设施的使用寿命。

 

在增材制造中使用创新软件解决方案

复杂的仿生结构是使用特殊的通用软件工具(例如 Synera)进行设计和计算的。BMW iVentures 对这款软件进行了战略投资,该软件以前称为 Elise。Synera 可实现快速高效的优化,现已用于 BMW 集团内的许多开发领域。该软件用于设计和计算复杂的仿生结构。Synera软件的优化功能特别适用于3D打印,因为3D打印的高度灵活性允许拓扑优化的仿生结构能够精确打印,从而实现轻质结构设计的潜力。

 

汽車3d.png

汽车行业的3D打印路线图
© 3D科学谷


小程序

WOD数字化世界

扫码进入小程序

我要咨询

WOD 公众号二维码 网站追踪码.png

扫码咨询

邮件订阅

感谢您对2025制造业数博会的关注,我们会定期免费为您发送展会的最新动态。

我已阅读并同意您的《隐私保护协议》